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Maximum Likelihood Noise Cancellation Using the 
EM Algorithm 
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AND EHUD WEINSTEIN, SENIOR MEMBER, IEEE 

Absrrurr-Single-microphone \peech enhancement systems have typ- 
ically shown limited Performance. Two-microphone systems based on 
a least-squares error criterion have shown better results in some con- 
texts; however, sometimes the desired (speech) signal is cancelled to- 
gether with the noise. In this paper we suggest a new approach to the 
two-microphone speech enhancement problem. Specifically, we for- 
mulate a maxiniuni likelihood (ML) problem fur estimating the parani- 
eters needed for cancelling the noise, and then, we solve this ML prob- 
lem via the iterative EM (Estimate-hlaximize) technique. The resulting 
procedure shows encouraging results that improve upon the “classi- 
cal” least-squares approach. 

I .  INTRODUCTION 
HE problem of noise cancellation in single- and mul- T tiple-microphone environments has been extensively 

studied [ 13. The performance of the various techniques in 
the single-microphone case seems to be limited. How- 
ever, with two or more microphones, the performance of 
an enhancement system may be improved due to the avail- 
ability of reference signals. 

In this paper, noise cancellation based on a two sensor 
scenario, as indicated in Fig. 1 ,  is considered. One sensor 
(the primary microphone) measures a signal that consists 
of speech embedded in noise. The second sensor (the ref- 
erence microphone), located away from the speaker, mea- 
sures a signal that consists mainly of the noise. The signal 
measured in the reference microphone is used for cancel- 
ling the noise in the primary microphone. A reasonably 
general model for this scenario is shown in Fig. 2. 

The most widely used approach to noise cancellation, 
based on two microphones, was suggested by Widrow et 
al. [2]. In this approach, it is assumed that the system B 
is zero and that C and D are identity, so that the output 
of the reference microphone is due only to the noise, and 
that the noise component in the primary microphone is the 
output of an unknown linear system with transfer function 
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A ( z )  whose input is the signal measured in the reference 
microphone. The coefficients of the impulse response of 
this system are estimated by a least-squares fitting of the 
reference microphone signal to the primary microphone 
signal. This method will be referred to in this paper as the 
least-squares method. 

Widrow et al. proposed an adaptive solution for this 
least-squares problem, based on the LMS (Least Mean 
Square) algorithm. This approach is illustrated in Fig. 3, 
and has been applied in a speech enhancement context, 
e.g., [ 3 ]  and [4]. Adaptive algorithms for solving the lin- 
ear least-squares problem, based on the RLS (Recursive 
Least-Squares) algorithm, also exist, e.g., [ 5 ]  and [6 ] .  

A major limitation of the least-squares method, espe- 
cially when the reference signal is correlated with the de- 
sired (speech) signal, is that a portion of the desired signal 
may be cancelled together with the noise. Since the de- 

0096-35 18/89/0200-0204$01 .OO @ 1989 IEEE 



FEDER c/ < I /  : MI- NOISE CANCELLATION USING EM ALGORITHM 20s 

Fig. 3 .  “Classical” noise cancelling scheme. 

sired sjgnal may be cancelled with some delay, the re- 
sulting effect is to introduce a reverberant distortion in the 
output. 

In our approach we formulate the problem as a statis- 
tical maximum likelihood problem which, as we will 
show, allows us to take advantage of more a priori infor- 
mation than the least-squares formulation. Solving this 
ML problem directly is difficult, and thus it is solved via 
a general iterative algorithm for ML that has been intro- 
duced by Dempster et al. [7] and is referred to as the Es- 
timate-Maximize (EM) algorithm. In the EM algorithm, 
the observations are considered “incomplete” with re- 
spect to more convenient “complete data” measure- 
ments. The algorithm iterates between estimating the suf- 
ficient statistics of the “complete data” given the 
observations and a current estimate of the parameters (the 
E step), and maximizing the likelihood of the complete 
data using the estimated sufficient statistics (the M step). 

It is interesting to note that an algorithm essentially 
similar to the EM algorithm has been suggested previ- 
ously in a speech enhancement context. One of the variety 
of methods that have been suggested for a single micro- 
phone case is the iterative enhancement method proposed 
by Lim and Oppenheim [8]. Although not developed from 
this point of view, this method can be shown to be an 
instance of the EM algorithm. In [8] the observations are 
the desired signal with additive noise and the “complete 
data” are the signal and noise separately. The unknown 
parameters are some spectral parameters of the signal 
(LPC parameters, for speech). The algorithm iterates be- 
tween Wiener filtering applied to the observations using 
the current spectral parameters of the signal (the E step), 
and updating the spectral parameters using the results of 
the Wiener filter (the M step). In this respect, the proce- 
dures presented in this paper may be considered as exten- 
sions of the method in [SI to two microphones. 

The methods that will be presented in this paper can be 
used as an alternative to the least-squares method of [2] 
and its derivatives, e.g., [9] and [ lo] .  Simulation results 
indicate that the proposed schemes tend to eliminate the 
reverberant distortion encountered in the least-squares 
method. We finally note that the proposed scheme can 
easily be extended to the more general, multiple micro- 
phone case. 

The paper is organized as follows. In Section I1 we de- 
velop the maximum likelihood formulation of the noise 

a simplified scenario that basically makes the same as- 
sumption as in (21. In Section V ,  the algorithm is de- 
scribed for a more general scenario that includes “cross 
talk,” i.e., the coupling of the desired signal into the ref- 
erence microphone. Simulation results, including results 
that use a simulated realistic room impulse response, are 
discussed in Section VI. 

11. MAXIMUM LIKELIHOOD FORMULATION OF THE TWO- 
SENSOR NOISE CANCELLATION PROBLEM 

The mathematical ML problem encountered in a two- 
microphone noise cancellation problem is based on the 
following scenario. A desired (speech) signal source and 
a noise source both exist in some acoustic environment, 
say a living room or an office. We have two microphones 
used in such a way that one microphone is intended to 
measure mainly the speech source while the other is in- 
tended to measure mainly the noise source. 

The desired signal and the noise are both coupled into 
each microphone by the acoustic field in this environ- 
ment. This situation is illustrated in Fig. 2 ,  and is repre- 
sented by’ 

Y l ( f >  = C { , ( r , }  + A {  W ( f ) }  + el([) 

Y d t )  = B { s ( t ) )  + D { w ( t ) }  + e d r )  

( l a >  

( l b )  

where s ( t )  denotes the desired (speech) signal and ~ ( t )  
denotes the noise source signal. The systems A ,  B ,  C, and 
D are assumed to be linear systems, representing the 
acoustic transfer functions between the sources and the 
microphones. We will assume that these systems are time 
invariant in our analysis window. The additional noise 
sources e l (  t )  and ez( t )  are included to represent modeling 
errors, microphone and measurements noise, etc. 

Under these assumptions, the observed signals in the 
analysis window 0 I t I N - 1 may be written in the 
frequency domain as 

(2a) Yl(w) = C ( w )  S ( w )  + A ( w )  W ( w )  + E l ( w )  

Y ~ ( w )  = B(m) S ( W )  + D ( w )  W ( W )  + & ( U )  (2b) 

where Y , ( w )  and Y2(w)  are the Fourier transforms of the 
the observed signals yI (  t )  and yz( t ) .  Assuming that y i  ( r )  
is a discrete-time signal and that the length of the analysis 
window is N samples, Y , ( w )  is given by 

( 3 )  
1 N - l  

y j ( w )  = - C yi(f)e-ju‘. f i  r = o  

A ( o ) ,  B ( w ) ,  C ( w ) ,  and D ( o )  are the frequency re- 
sponses of the four linear systems in Fig. 2. 

In the more general case of M microphones and K noise 
sources, the observed signal may be written (in the fre- 
quency domain) as 

Y ( w )  = A ( w )  S ( w )  + B ( w )  W ( w )  + E ( w )  (4) 

where Y (  U ) ,  A ( U ) ,  and E ( w )  are 1 x M vectors, W( w )  
is 1 X K vector, and B ( w )  is K x M matrix. 

and in Section ‘I1 we describe the 
‘The mathem;ttics and the algorithms will be formulated in  term\ of 

EM for Obtaining its The discrete time signals with the independent variable f representing normal- 
of this iterative algorithm is described in Section IV, for ized sample time. 



206 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, A N D  SIGNAL PROCESSlNG. VOL. 37. NO. 2, FEBRUARY 1989 

To formulate a statistical maximum likelihood prob- 
lem, we make the following assumptions. The noise 
source w (  t )  is assumed to be a sample from a Gaussian 
random process. The desired speech signal s (  t ) ,  in many 
cases, is modeled as an AR Gaussian random process 
whose parameters (the LPC parameters) are time varying. 
For our purposes, in a short analysis window, we assume 
that those parameters are constant, and thus in the math- 
ematical formulation, the desired signal is also assumed 
to be a sample from a stationary AR Gaussian process. 
The error signals e l (  t ) ,  e2( t )  are modeled as white Gauss- 
ian noise processes. The signals s ( t ) ,  w ( t ) ,  e l ( t ) ,  and 
e2( r )  are jointly Gaussian and assumed to be uncorrelated. 

The unknown parameters are the coefficients of the var- 
ious systems, and some spectral parameters of the signals. 
We denote the power spectra of s ( t )  and w ( t )  by P ,  ( w )  
and P , (  w ) ,  respectively. U:,, will denote the error sig- 
nals variances. 

We formulate the problem in terms of short-time pro- 
cessing so that the signals and the system parameters can 
be slowly time varying; consequently, a sliding window 
is applied. As already noted, the window length N must 
be short enough so that the parameters are constant over 
its duration. However, we will also assume that it is long 
enough so that the short-time DFT coefficients of s ( t ) ,  
w ( t ) ,  e l ( t ) ,  and e 2 ( t )  at different frequencies are uncor- 
related. Under this assumption, the likelihood of the ob- 
servations ( y , (  t )  and y2(  t ) ,  t = 0, * - , N - 1 )  with 
respect to the parameters above is easily expressed in the 
frequency domain, and is written as2 

logf,l,?(Yl(t), y 2 ( t ) ;  e >  
= -E (log det A ( q ;  0 )  

iL/ 

( 5 )  

where Y ( o )  is a vector whose components are Y l ( w )  and 
Y2( U ) .  The matrix A ( U ;  0 )  is the power spectrum matrix, 
I.e.. 

A ( ~ ;  e) = E { Y ( ~ )  ~ ( w , ' )  

by ( 5 )  and (6), is not only complicated but it may also be 
ill posed. The likelihood function depends on the param- 
eters only through the matrix A ( w ) ,  and all possible so- 
lutions that generate the same A ( w )  have the same like- 
lihood. If indeed all the associated systems and the power 
spectra are unknown and their structure is allowed to be 
arbitrary, we expect a nonunique solution, since every 
value of A ( w )  may correspond to a set of values for the 
parameters. Thus, some constraints must be imposed on 
the parameters. For example, we may assume that some 
of the parameters are known, or that there is a simple 
structure to the systems. Of course, the more constraints 
there are, the more this ML problem becomes well posed 
mathematically. However, we must limit ourselves to 
constraints that are consistent with the noise cancellation 
problem under consideration. 

We will constrain the systems that represent the room 
acoustics to be causal, and to have a finite impulse re- 
sponse. Thus, for example, A (  w )  is a frequency response 
of an FIR filter, i .e.,  

4 

k = O  
~ ( w )  = C ake-jwk. (7) 

As mentioned earlier, we will usually assume that s ( t ) ,  
the desired signal, is a sample from an AR process of 
order p ,  and thus its power spectrum P, ( U )  is of the form 

In Sections IV and V, more specific situations will be 
considered, and additional constraints and assumptions, 
based on the additional knowledge about the underlying 
scenario, will be made. In both sections, the resulting ML 
problem is constrained enough so that it is not ill posed. 

We note that even with these assumptions and con- 
straints, the required maximization of the likelihood func- 
tion (5) with respect to the signal and system parameters 
is still complicated. Therefore, the EM algorithm will be 

We note that this technique, for representing the likeli- 
hood of a stationary Gaussian process with long obser- 
vation time in the frequency domain, is widely used in 
many signal processing applications, see, e.g., [l 1, ch. 
41. It is also justified in [12, ch. 131 and elsewhere. 

For the M microphone case, the likelihood function is 
again (5) where the matrix A is now the M x M power 
spectrum matrix E { U (  U )  Y (  U ) '  } .  

The general maximum likelihood problem, represented 

'The symbol + denotes the Hermitian operator. while the symbol * de- 
notes the complex conjugate operator. 

proposed for its solution. In the cases considered in the 
next sections, the unavailable desired signal s ( t )  will be 
a component of the chosen complete data. Thus, as a by- 
product of the use of the EM algorithm, an estimate of 
the desired signal will become explicitly available while 
implementing the E step. 

111. THE EM ALGORITHM FOR MAXIMUM LIKELIHOOD 
ESTIMATION 

The methods proposed in this paper for noise cancel- 
lation are based on an iterative solution to the maximum 
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likelihood problem of ( 5 ) .  This iterative solution, referred 
to as the EM algorithm, is briefly summarized in this sec- 
tion. 

We denote by Y the data vector with the associated 
probability density f y ( y ;  8 )  indexed by the parameter 
vector 8 where the possible parameter values are con- 
tained in a set 8. Given an observed y,  the ML estimate 
6, is the value of 8 that maximizes the log likelihood, 
that is,3 

6, = arg max l o g f y ( y ;  0 ) .  (9)  
0 s 0  

Suppose that the data vector Y can be viewed as being 
incomplete, and we can specify some “complete” data X 
related to Y by 

H ( X )  = Y (10) 

where H (  - ) is a noninvertible (many to one) transfor- 
mation. 

observed data. Thus, the EM algorithm can be imple- 
mented in many possible ways. The way H (  . ) is speci- 
fied (i.e., the choice of the “complete” data) may criti- 
cally affect the complexity and the rate of convergence of 
the algorithm. 

IV. A SIMPLIFIED SCENARIO 
In this section, a simplified version of the problem is 

assumed, corresponding to restricting B ( z )  to be zero and 
both C(z) and D ( z )  to be unity in Fig. 2, so that Fig. 2 
reduces to Fig. 4 .  This scenario is assumed (at least im- 
plicitly) by Widrow et al. in [2]. In this scenario, one 
microphone measures the desired (speech) signal with ad- 
ditive noise, while the second microphone measures a ref- 
erence noise signal, which is correlated with the noise 
component of the signal measured in the first microphone, 
but has no signal component present. In Section V we 
consider a more general configuration. 

The EM algorithm is directed at finding the solution to 
(9); however, it does so by making an essential use of the 

iterative method. It starts with an initial guess e(’), and 
€I(’’+’) is defined inductively by 

8(“+’ )  = arg max E {  logfx(x; 8)/y; 8‘”))  (11) 

A .  

and y 2 ( f ) ,  A ( z )  is an FIR filter, e ( t )  is Gaussian white 
noise, and s ( r )  is the desired signal. 

ML Problem 

complete data specification. The algorithm is basically an As indicated in Fig. 4, the Observed are Y I (  ‘1 

Specifically, then 

(12) 0 € 0  Y l ( f >  = S ( t )  + n ( t >  

wherefx(x; 8)  is the probability density of X ,  and E 1 -/y; 
e( ” ) }  denotes the conditional expectation given y,  com- 
puted using the parameter value O ( “ ) .  The intuitive idea is 
that we would like to choose 8 that maximizes log f x ( x ;  
e), the log likelihood of the complete data. However, 
since logfx(x; 8 )  is not available to us (because the com- 
plete data are not available), we maximize instead its ex- 
pectation, given the observed data y .  Since we used the 
current estimate rather than the actual value of 8 
which is unknown, the conditional expectation is not ex- 
act. Thus, the algorithm iterates, using each new param- 
eter estimate to improve the conditional expectation on 
the next iteration cycle (the E step) and then uses this 
conditional estimate to improve the next parameter esti- 
mate (the M step). 

The EM algorithm was presented in its general form by 
Dempster et al.4 in 171. The algorithm was suggested be- 
fore, for specific applications, by several authors, e.g., 
[14]-[16]. The rate of convergence of the algorithm is 
linear [ 7 ] ,  depending on the fraction of the covariance of 
the complete data that can be predicted using the observed 
data. If that fraction is small, the rate of convergence tends 
to be slow, in which case one could use standard numer- 
ical methods to accelerate the algorithm. 

We note that the EM algorithm is not uniquely defined. 
The transformation H (  * ) relating X to Y can be any non- 
invertible transformation. Obviously, there are many pos- 
sible “complete” data specifications that will generate the 

arg max” denotes the argument of the maximization 3 . .  

‘In 171 it is shown that each iteration increases the likelihood. However. 
there is an error in the convergence proof (theorem 2 of 171). pointed out 
Wu [ 131. The proper conditions that guarantee the convergence of the al- 
gorithm to a stationary point of the likelihood are given in [13]. 

where the noise component in the primary microphone is 

Y 

k = O  
n ( t )  = C akyz ( t  - k )  + e ( t )  ( 1 3 )  

and it incorporates the coupling of w ( t )  into the first sen- 
sor and the additional error e ( t ) .  Equivalently, (12) and 
(13) may be written as 

4 

k = O  
y l ( t )  = s ( t )  + c akw(r  - k )  + e ( r )  (14) 

As described above, we assume that the desired signal 
s ( t )  can be represented as a sample function from a sta- 
tionary Gaussian process whose spectrum is known up to 
some parameters. The unknown parameters 8, in this case, 
are the system coefficients { ak }, the spectral parameters 
of s ( t )  (which will be denoted c p ) ,  and a*, the variance 
of e ( t ) .  

The likelihood of the observation is again expressed in 
the frequency domain. This case is simpler than the gen- 
eral case discussed in the previous section. The likelihood 
may be obtained without referring to the general formula 
of ( 5 ) .  

Specifically, since under the assumptions made above, 
the Fourier coefficients of the signals in different frequen- 
cies are uncorrelated, the likelihood of the observation 
may be written in the frequency domain as 
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Fig. 4.  The observations: simplified scenario 

proach, the complete data are chosen to be the set of sig- 
nals { s ( t ) ,  n ( t ) ,  y2( t )  } .  This choice of complete data is 
motivated by the simple maximum likelihood solution 
available if indeed s ( t ) ,  n (I), and yr(  t )  are observed sep- 
arately. 

Loosely speaking, if these complete data are available, 
the maximum likelihood estimate of { a L }  and U' is 
achieved by least squares fitting of y 2 ( t )  to n ( r ) .  The 
spectral parameters of s ( t )  are also easily estimated by 
solving, for example, the normal equation using the sam- 
ple correlation of s ( t ) ,  for LPC parameters. 

More specifically, the likelihood of the complete data, 
&.(e), satisfies 

where log yz( r ) )  is independent of 8. Also, given 
y2( r ) ,  the signals s ( t )  and n ( t )  are statistically indepen- 
dent, and thus, 

L 

+ 1% J;, / I? (  H ( t )  / Y 4 d  ; 8 ) . (21 1 
. (18) Noy, l ~ g J ; , / , ~ ( n ( f ) / y ~ ( r ) ;  0 )  depends only on { a L }  

and U-, and it is defined by the p.d.f. of e ( r ) ,  i .e.,  

log AI/ \?(  ( f ) / ? ) 2 ( t )  ; 8 )  

'j 1 Y h )  - A ( U l )  * Y h ) (  + 
P S ( W / )  + a* 

Thus, maximizing the likelihood (16) in this case is 
equivalent to minimizing 

N - l  r . /  \ 2 1  

( 19) 
with respect to o 2  and the coefficients of P,  ( w )  and A ( U ) .  

We will assume that A (0) is the frequency response of 
an FIR filter of a given order q, i .e . ,  it is of the form of 
(7). Also, we will assume that s ( t )  is an AR process of 
order p with coefficients { h, }p= I and gain G, so that its 
power spectrum P , ( w )  is given by (8). 

In some applications, like LPC vocoding and speech 
recognition of noisy data, we will be interested mainly in 
the spectral parameters of the speech signal. In this case, 
solving this ML problem explicitly provides these desired 
parameters. In other applications, we will be interested in 
the speech signal itself. So, using the estimated signal pa- 
rameters, { a k } ,  we will cancel the noise in the primary 
microphone and obtain an enhanced speech signal. As 
mention above, this speech signal estimate will be avail- 
able as a by product of the EM algorithm suggested be- 
low, while implementing the E step. 

B.  Solution via the EM Algorithm 
Direct minimization of (1 9) is complicated; therefore, 

we consider the use of the EM algorithm. In this ap- 

In general, the signal y2(r)  may be related to s ( t ) .  
However, this relation is arbitrary and unknown. There- 
fore, we will assume that the probability distribution of 
s ( t )  given y 2 ( t )  is the a priori distribution of s ( t ) .  This 
probability distribution is the distribution of a stationary 
random process with power spectrum P , > ( w )  and it de- 
pends only on the spectral parameters, cp, of s ( r ) ,  thus, 

where S ( w )  is the Fourier transform of s ( t ) ,  i.e., 
, N - l  

Thus, estimating 8 by maximizing the likelihood of the 
complete data is equivalent to estimating U' and { a k }  by 
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the Fourier transform of the signal $ ( t ) .  
(24)  0 The conditional expectation (estimate) of n ( t )  is 

and estimating the spectral parameters cp by minimizing 4 

r i ( t )  = C uY)y2( t  - k )  + $ ( t ) .  (31 1 
h = O  

(25) The M Step, the nth Iteration: Substitute the condi- 
tional expectations of (30) and (31) into (24) and (25). 

0 update { ak } by solving the least-squares problem 
Specifically, 

of (24) with (31) substituted for n ( t ) ,  i.e., 

1. I S ( W / )  I? 2: log p \ ( w / ;  c p )  + 
p \ ( u / ;  c p )  

wi I 
Note that when s ( t )  is assumed to be an AR process, we 
show in the Appendix that minimizing (25) is equivalent 
to solving the Yule-Walker equation, using the sample 
autocorrelation of s ( t ) .  

We observe from (24) and (25) that the required statis- 
tics of the complete data are n ( t ) ,  I S (  w )  1 2 ,  and also n*( t )  
if we need to estimate U * .  Thus, the E step of the algo- 
rithm requires the following expectations: 

N - l  q 

{ u ~ ~ l + l ) ~  = arg min n = O  c ( L = O  c ( a y )  - ah) 

2 

(32) 
2 ( t >  = E {  n ( t ) / y l ( t ) ,  y 2 ( t ) ;  e ( " ) }  (26) 

0 update U' as and . N - 1  

.. . - 
where 0") denotes the parameters { ak} ,  U * ,  and cp in the 
nth iteration. If we also need to estimate U * ,  we have to 
take the expectation 

e*(t> = E[(n(t)  - 5 U k Y * ( t  - k ) ) ' /  

where e2(t)  defined in (28) is the inverse Fourier trans- 
form of M E (  U ) ,  calculated in the E step. 

0 update the spectral parameters by solving (2b) with 
Ms( w l )  substituted for 1 S (  w l )  1'. For LPC parameters, 
solve the Yule-Walker equation using the correlation val- 
ues obtained by inverse Fourier transforming M s (  U ) .  

The EM algorithm above iterates, until some conver- 
gence criterion is met. This algorithm is summarized in 

A 

k = O  

(28) 

The E and the M steps of the EM algorithm for mini- 
mizing (19) may now be stated explicitly. Recall that we 
denote by 0 ' " )  [or  by { u p ' ) ,  ( and P f n ) (  U ) ]  the 
current estimate of the parameters. 

The E Step, the nrh Iteration: 
0 Generate a signal x ( t )  

4 

x ( t )  = y l ( t )  - c ap 'y2( t  - k ) .  (29) 
k = O  

Note that if the true coefficients { u k }  were known, then 
x ( t )  = s ( t )  + e ( t ) .  

0 Apply a Wiener filter of x ( t )  to obtain the condi- 
tional expectation or the minimum mean square error es- 
timate of s (  t )  [or  S (  U / ) ]  and I S (  U / )  1 2 .  Specifically, for 
all w I ,  generate an estimate of S (  U / ) ,  E (  WO and the quad- 
ratic terms I S (  U, )  \ *  and I E (  U / )  1' as 

Fig. 5 .  

V.  A MORE GENERAL SCENARIO 
The modeling of the two-microphone noise cancellation 

situation in the previous section ignores the possible cou- 
pling of the desired signal s ( t )  into the reference micro- 
phone, as is present in Fig. 2 and equation (1). In the 
classical least-squares approach, this coupling results in a 
reverberant quality to the output because the desired sig- 
nal is partially cancelled together with the noise. Since 
the ML problem of the previous section also ignores this 
coupling, the EM noise cancelling algorithm, developed 
in Section IV, has a similar problem. 

In the ML approach considered in this section, this cou- 
pling is taken into account. Specifically, we now include 
the presence of the system B in Fig. 2, but still assume 
that C = 1 and D 1 corresponding to the assumption 
that sensor 1 is close to the signal source and sensor 2 is 
close to the noise source. The resulting model is shown 
in Fig. 6. We also assume that A ( z )  and B ( z )  are both 
FIR systems. These assumptions are important because 
without them, the problem is ill posed. For example, if 
A ,  B,  C ,  and D are arbitrary, intuitively one sees that there 
is a symmetry to the problem that precludes the algorithm 
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Fig. 5. The EM algorithm; simplified scenario 

distinguishing between the signal and the noise compo- 
nents in each sensor. With the stated assumptions this 
symmetry is removed. 

We will start by explicitly presenting the ML problem 
for this scenario. We will then present an EM algorithm 
for maximizing this likelihood, where the complete data 
will be composed of the desired speech signal s ( t )  and 
the noise source signal w( t ) ,  in addition to the observed 
signals y I (  t )  and y2( t ) .  

A. The M L  Problem 
The situation assumed in this section is indicated in Fig. 

6. The mathematical model that corresponds to the situ- 
ation is given by 

where, as before, s ( t )  is the desired signal, w ( t )  is the 
noise source signal, and e l ( t ) ,  e 2 ( t )  are the measurement 
and modeling error signals in the two microphones. As in 
the general problem, s ( t )  and w ( t )  are assumed to be 
sample signals from Gaussian random processes. The er- 
ror signals e l ( [ ) ,  e 2 ( t )  are white Gaussian noise pro- 
cesses. The unknown parameters 8 are the impulse re- 
sponse coefficients { ak } and { bk ] of the systems A and 
B ,  the spectral parameters of the signals s ( t )  and w ( t )  
denoted cpS and qW, respectively, and the variances a,, and 
U, of the noises e l (  t )  and e2( t ) .  

With these assumptions, the likelihood of the observa- 
tions is given again by ( 5 ) .  However, with C (  w )  = D( U )  

= 1, the power spectrum matrix A ( U )  is simplified to 

?id 

Fig. 6. The observations; more general scenario 

to be known, and are denoted qa, qh, respectively. The 
desired signal is assumed to be a sample from an AR pro- 
cess of a given order p ,  and thus p , ( ~ )  will have the 
structure of (8). We further assume that w ( t )  is a white 
noise signal, i.e., P,, ,(w) is constant. Even with these as- 
sumptions, the underlying ML problem is complicated, 
and again we will use the EM algorithm for its solution. 

For applications such as LPC vocoding, where only the 
spectral parameters of the speech signals are required, 
solving this ML problem will explicitly provide these de- 
sired parameters. For applications where the speech sig- 
nal is required, the MMSE estimate of the speech signal 
using the ML estimate of the parameters will be sug- 
gested. This MMSE estimate will be available for each 
current parameter value, as a byproduct, while imple- 
menting the E step of the suggested EM algorithm. 

B. Solution via the EM Algorithm 
The complete data suggested for defining the EM al- 

gorithm, in the current context, are the set of signals 
{ s ( t ) ,  w ( t ) ,  y l ( t ) ,  y Z ( t ) } .  The complete data are chosen 
this way if indeed the signals s ( t )  and w ( t ) ,  the input to 
the two channel system of (34), are observed, in addition 
to the signals y , ( t )  and y 2 ( t ) ,  the output of this system, 
there will be a simple procedure for ML estimation of the 
parameters of this two-channel system. 

Specifically, suppose that these complete data are avail- 
able. To estimate the parameters, we will maximize its 
likelihood given by 

A ( w )  = E {  Y(w) Y(w)'} 

( 3 5 )  
P , ( w )  i- A ( w )  P , (w)  A * ( w )  + dl 
B(o) P s ( w )  + P , ( w )  A * ( w )  

P s ( w )  B * ( o )  + A ( @ )  f ' , , (w)  

B ( w )  f ' & ( w ) B * ( w )  i- P,,(w) i- -L 
We will assume again that A ( w )  and B ( w )  are fre- 

quency responses of FIR filters, i.e., their structure is 
given by (7). The orders of those FIR filters are assumed 

The signals y , ( t )  and y 2 ( t )  are independent, given s ( t )  
and w ( t ) .  The signals s ( t )  and w ( t )  are independent by 
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assumption, thus, 

L<(W = logf,,/s,,(Yl(t)/s(t), w G > ;  e )  
L I 

Y 

I 

+ 1% f v 2 / r , w (  Y Z ( t ) / S ( t )  9 w ( t >  ; e )  

+ logf , (s( t ) ;  e)  + logf,(w(t); e ) .  

L -.,A 

II 

( 3 7 )  -- 
III IV 

Term I depends only on { ak } and af, and is the log 
probability of the sequence e l ( t ) .  Similarly, term II de- 
pends only on { b k }  and af* and is the log probability of 
the sequence e2( t ) .  Term ZIZ is the log probability of the 
stationary signal s ( t )  and depends only on its spectral pa- 
rameters cps. Similarly term IV is the log probability of the 
stationary signal w ( t )  and depends only on its spectral 
parameters 9,. Maximizing the likelihood of the com- 
plete data with respect to 8 is equivalent to maximizing 
each of the terms I-IV separately with respect to the pa- 
rameters they depend on. 

Thus, given the complete data, the parameters cps are 
estimated by 

i s  = arg max 1% f s (s (4;  cps) 
'pP 

where S (  U )  and W (  U )  are the Fourier transforms of s ( t )  
and w ( t ) ,  respectively, i.e., 

1 N - '  
~ ( w )  = - C s(t)e-Jwr f i  r = O  

1 N - '  
~ ( w )  = - C w(t)e-jwr. Jis t = O  

r w ( l )  r w ( 2 )  

. . .  - .  r , ( 2 )  r w ( l  

The maximization in (38) is sometimes simpler, e.g., 
when s (  t )  is assumed to be an AR process, in which case, 
as shown in the Appendix, maximizing (38) is equivalent 
to solving the Yule-Walker equation, using the sample 
autocorrelation of s ( t ) .  Similarly, solving (39) is some- 
times simpler, and if w ( t ) ,  the noise source signal, is a 
white noise signal, it is equivalent to finding the (con- 
stant) spectrum level P,  by 

1 N - '  1 2 B,  = - C w 2 ( t )  = - C 1 W ( U , ) (  . (40) N r = O  N W I  

Estimating the impulse response coefficients, { ak } , and 
the variance, a:,, given the complete data, requires solv- 
ing a least-squares problem, since 

f 4a 

k = O  
- C ~ k w ( t  - k )  + N * log U:,. (41)  

Similarly, estimating { b k }  and af2 given the complete data 
requires solving the following least squares problem: 
A h  

u:2, {bk} = arg pax logf,/s,,(Y,(t)/s(t), w ( r > ;  
{ bk } 

bo, * * * 9 b4b? '22) 

46 
- bks(t  - k ) )  + N log a;,. (42)  

k = O  

The explicit solution of the least-squares problems im- 
plied by (41) and (42) is achieved by solving the follow- 
ing "normal" linear equations: 

Bw * a = rwy, - rnrs 

(lis - b = rsyz - r,,, 

(43) 

(4.4) 
where a, is the correlation matrix of w ( t )  of order qa, 
i .e.,  
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as is the order q b  correlation matrix of s ( 1 )  

The vectors r,,.,,,, r,,,s, r,s,?, r.,lv represent the appropriate 
cross correlatio-n between the signals, e .g . ,  

P!:)( W )  the current estimate of the power spectra of s ( f )  
and w( t ) .  Let H (  U / )  denote the matrix 

1 NI,1 
where r,v.s(k) = - s ( r )  ~ ( t  - k )  (47)  

and the vectors a and b are the unknown impulse response 
coefficients of the systems A and B .  

Observing the required procedures for maximizing the 
likelihood of the complete data, i.e., equations (38), (39) 
and (43), (44), we see that the sufficient statistics of the 
complete data contain quadratic terms, which are the sam- 
ple autocorrelation (or the sample spectrum) and the sam- 
ple cross correlation (or cross spectrum) of the various 
signals, in addition to the linear terms (i.e.,  the signals 
themselves). Thus, the E step of the algorithm (with the 
above choice of complete data) requires the expectations 

$ ( t )  = E {  s ( l ) / y d t ) ,  ~ d t ) ;  e ( r i ' ]  (48a) 

N I = O  

W> = E {  s ( t ) / y l ( t ) ,  e(")} (48b) 

and the quadratic terms 

and let + ( w I )  and C denote the power spectra matrices 

( 5 2 )  
The required conditional expectations are readily avail- 

able, using linear estimation theory. These conditional es- 
timates may be interpreted, in this case, as performing a 
two-channel Wiener filter (see Appendix) and calculating 
its error covariance matrix. Thus, the estimate of the lin- 
ear terms is given by 

where K (  U / )  is the matrix 

For the quadratic terms, we have to calculate the error 

We will implement the E step in the frequency domain. * H ( W / ) +  + C ) - l H ( w / )  + ( U / )  ( 5 5  

since for stationary processes with large observation time, 
the DFT coefficients at each frequency are statistically in- 
dependent and can be processed separately. In each fre- 

and the quadratic terms are obtained by 

M s ( W / )  = E {  l S ( W / )  I 2 / y i ( W / )  3 yd U / ) }  

The E step requires the conditional expectation of S (  U / ) ,  

At each step of the algorithm, the current values of the 
parameters are used. We will denote by A ' " ' ( w )  and 
B(") (  W )  the current estimate of the frequency responses 
of the unknown systems A and B ,  and by P ~ " ' ( w )  and 

W ( W , ) ,  I S ( W / )  1 2 ,  I W(U/) I*, and S ( W / )  W * ( W / ) .  M s w b J  = E {  S ( W / )  W * ( 4 / Y 1 ( 4 ,  Y 2 ( 4 }  

= $ ( U / )  @ * ( U / )  + @ , * ( U / ) .  ( 5 8 )  

The E and M steps of the EM algorithm for maximizing 
the likelihood of the observations [given by (5) and (35)] 



FEDER c ~ f  o/.: MI- NOISE CANCELLATION USING EM ALGORITHM 213 

for this more general case may now be stated explicitly. 
Here, for simplicity, we will assume that we do not have 
to estimate a:, and a:?. 

The E Step, the nth Iteration: 
0 Calculate the conditional expectations $( U / )  and 

0 Calculate Ms( U , ) ,  M,( U , ) ,  and Msw( U / )  by (56)- 

0 The signal estimates i ( t )  and G ( t ) ,  and the cor- 
relation estimates i, ( k ) ,  ?,, ( k ) ,  and ?,, ( k ) ,  are achieved 
by inverse Fourier transforming $(a), @ ( U ) ,  M, (w) ,  
M,( U ) ,  and Msw( a), respectively. 

The M Step, the nth Iteration: 

*(U/) by (53) .  

(58). 

0 Solve the linear equations of (43) and (44) for a 
and b, using the estimates ?, ( k ) ,  i,, ( k ) ,  and i,, ( k )  from 
the E step, and with 

1 N - I  
t N , , ( k )  = - z G ( t )  y l ( t  - k )  (59a) N t = O  

The result is the updated coefficients a‘”+” and b(””)  of 
the systems A and B .  

0 Update the spectral parameter estimate, by solving 
(38) and (39), using M F ( w I )  and M,(u,) instead of 
I S (  a,) and 1 W (  U / )  I*.  For LPC parameters of the 
speech signal s ( t ) ,  solve the Yule-Walker equations, 
using ? \ ( k ) .  

The EM algorithm above iterates, until some conver- 
gence criterion is met. This algorithm is summarized in 
Fig. 7. 

Further Research-Sequential Algorithms: The proce- 
dures suggested in this section, and also in the previous 
section, are implemented in each iteration on the entire 
data. We, however, may also be interested in adaptive 
and sequential procedures, where in each iteration new 
measurements are processed and an updated segment of 
enhanced signal is produced. Examining the suggested 
batch procedure illustrated in Fig. 7, a sequential algo- 
rithm comes in mind. The Wiener filter of the E step will 
be replaced by the sequential Kalman filter, and the linear 
least-squares problems of the M step will be solved via a 
sequential RLS-type algorithm. This and other adaptive 
algorithms could potentially be an alternative to the LMS 
and RLS algorithms suggested for solving the least- 
squares problem that arises in Widrow’s approach in [ 2 ] .  
This possibility remains to be carefully explored. The de- 
tails, the analysis, and experiments with this adaptive ver- 
sion are now under investigation and are the subject of 
further research; some initial results may be found in 1171. 

VI. EXPERIMENTAL RESULTS 
The EM algorithm for both the simplified scenario of 

Section IV and the more general scenario of Section V 
has been implcmcntcd. In  this section we discuss the re- 
sults. 

Parameter  
Est imat ion 

Signal  
Corre la t ion 
Est lmate 

-4 THE ‘E’ STEP 

Conditional Expectation P S I G N A L  ESTIMATE 
Given Aiz)  Biz) and power 

spectra of the slgnals 
SENSOR 

p k  
noise autocorrelation 
and cross correlation 

Fig. 7. The EM algorithm; more senera1 sccnario. 

A .  The Simplijied Scenario 
The EM algorithm developed in Section IV has been 

implemented with s ( t ) ,  a speech signal. and y2( r ) ,  a band- 
limited noise signal, with a flat spectrum from 0 to 3 kHz. 
The FIR filter A ( z )  was of order 10. y l ( t )  was generated 
according to Fig. 4, and the SNR in y , ( t )  was approxi- 
mately -20 dB. The level of the independent noise source 
e ( r )  was 20 dB below the level of w( t ) .  The results were 
compared to a “batch” version of the least-squares al- 
gorithm, corresponding to estimating the { ak 3’s via the 
least-square problem 

? 
/ \ -  

and then cancelling the noise and estimating the signal as 
Y 

Both algorithms produced good enhancement of the 
speech signal, and although there were perceptible differ- 
ences, the overall quality of both was similar. 

The direct least-squares approach assumed that y2( t ) and 
s ( 1 )  are uncorrelated, and this assumption is critical. Our 
algorithm does not require this assumption. In a second 
experiment, y2( t )  included a delayed version of the speech 
signal, as illustrated in Fig. 8. (Note that this scheme is 
different than the scheme considered in the more general 
scenario, since we have a direct measurement of the input 
to the system A ( z ) . )  

In a second experiment, the levels of w ( t )  and e ( t )  
were as before, so that the SNR in y l ( t )  was again ap- 
proximately -20 dB. The direct least-squares approach 
cancelled part of the signal, together with the noise, re- 
sulting in poor quality. In comparison, the performance 
of our algorithm was still good. 

B. The More Getir r-ci I Scer IN rio 
The scenario assuined i n  Section V was \imulated, 

where again s( t )  was a speech signal and w ( t )  was a white 
noise signal. In order to simulate a realistic scenario, we 



~ 

214 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 37. NO. 2. FEBRUARY 1989 

SENSOR 
1 

-4) 
SIGNAL 
SOURCE 

I & e(t) 

I 

NOISE I 

t 
I;\ . y&t) .SENSOR 

SOURCE 
W) 

2 

Fig. 8.  Correlation between the reference and desired signals. C ( z )  = 

0 . 1 ~ - ~ .  

4.6 METERS 

SENSOR NOISE 
2 SOURCE 

3.1 
METERS 

SIGNAL .ySENSoR 
SOURCE ’ 

WALL ABSORPTION 0.6 

Fig. 9. The living room acoustic environment. 

QIa) F ,  1 0  i l v e e  110 5001 
D a t e  Wed May 28 01 32 17 1987 e e4 

e e3 

0 e2 

e 01 

e 

-0 01 
8 lee 208 300 

e lee 208 me 408 580 

Fig 10 Simulated “room acoustics” impulse responses 

assumed a living room environment with signal and noise 
source located as illustrated in Fig. 9. We used a simu- 
lation program developed by Peterson [18], and we gen- 
erated FIR impulse responses having 2000 coefficients 
each, for the systems A and B .  The first 500 coeffigients 
of these impulse responses are plotted in Fig. 10. Moni- 

toring the level of the noise source, we have considered 
the cases of +20, 0, and -20 dB SNR in y , ( r ) .  In all 
these experiments, the levels of e , ( [ )  and e 2 ( r )  were 20 
dB below the level of w ( t ) .  

We have implemented the EM algorithm described in 
Section V,  where we assumed that the level of the white 
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noise signals w ( t ) ,  e l ( [ ) ,  and e 2 ( t )  are known. The re- 
sults were compared to the least-squares method, by in- 
formal listening. Both algorithms estimated up to 500 
coefficients of the impulse response. In all SNR levels, 
our algorithm performed better, and its output, unlike the 
least squares output, was reverberation free. 

At high SNR ( +20 dB),  the output of the least-squares 
method output sounded worse than the unprocessed mea- 
surement signal, due to the signal cancelling effect. The 
output of our method sounded better than the original 
measurement signal. 

At 0 dB, the least-squares output sounded better than 
the measurement signal. However, it sounded much worse 
than the output of our algorithm, which at this SNR level 
generated an almost clean signal. 

At -20 dB SNR, the output of the ML method sounded 
better then the least-squares method. However, the dis- 
tinction between the two was not as significant as in the 
case of 0 dB SNR. This is perhaps a result of the fact that 
in order to generate a low SNR, we increased the level of 
the noise source, which resulted in a high noise-to-signal 
ratio in the reference microphone, which in turn resulted 
in a lower signal cancellation since the situation becomes 
closer to that assumed by the least-squares method. 

APPENDIX A 
MAXIMUM LIKELIHOOD PARAMETER ESTIMATION OF A N  

AR PROCESS WITH LONG OBSERVATION TIME 

equivalent to 
P 

rk - hiri .-k = 0 k = I ,  * . 9 P (63)  
i =  I 

where rk is the kth sample correlation coefficient, which 
is achieved by inverse Fourier transforming the sample 
power spectrum I S ( O )  I*,  i .e.,  

Similarly, taking the derivative with respect to G, we 
get 

r P P  1 
IS(wl)  ) *  C hIhneJ"'"-"' 

r = O  n = O  

G2 
P P  

G - h l h n ( S ( w ~ ) ~ 2 e J w 1 ' ' - n '  
G2 r = O  n = O  

which is equivalent to solving 
P P  

G = hih,,ri-,,. (66)  
i = O  n = O  

Since hO = - 1 and { h k } c =  I satisfy (63), we get 
P 

Let s ( t )  be a sample function from a Gaussian station- G = rO - hkrk. (67) 
k =  I 

ary AR process. Suppose that s ( t )  has been observed in 
the time window 0 I t I N - 1.  We want to estimate 
the AR parameters using the ML criterion. If the obser- 
vation window is long enough, maximizing the likelihood 
of the observation is equivalent to minimizing (25), where 
the power spectrum P , y ( w )  of the process is given by (€9, 
i.e., we have to minimize 

Thus, the AR parameters are estimated by (63) and (67) 
which are the Yule-Walker equations, using the sample 
correlation coefficients { rk }. 

APPENDIX B 
MULTICHANNEL WIENER FILTER 

Suppose that a k-component signal vector s ( f )  is pass- 
ing through a given multiinput, multioutput linear system 
X, generates an m-component output signal which is 
measured with additive noise, i.e., we measure 

2 IS(W,) ( *  * h P 1 ; J  

W I  i 

I1 Re [z [ ,, G I = o  

log G - log I;:, hieJ"" 1 + 
G 

(60)  y ( r )  = X { S c r , ]  + n ( t > .  (68)  

In the frequency domain, we may write where h,, = - 1 .  
We take now the derivatives of (60) with respect to {a} ' ; ,  I .  Then, setting the derivatives equal to zero, we Y ( w )  = H ( w )  - S ( w )  + N ( w )  (69)  

get where S ( w )  is the ( 1  X k)  Fourier transform of s ( t ) ,  
N ( w )  is the ( 1  x m )  Fourier transform of n ( t ) ,  Y ( w )  is 
the ( 1  X m )  Fourier transform of y ( t ) ,  and H ( w )  is the 
(k  x m )  frequency response of X. 

Suppose the signals are observed throughout the time 
axis, -00 I n I 00. Also assume that s ( t )  and n ( r )  are 
sample signals from zero-mean stationary Gaussian pro- 
cesses with the power spectra matrices 

(61)  

1 + - 1 S ( w l )  I 2  h,ej'"'(i-k) 

c hieJ"" 
i = O  

9 P .  = O  k =  1, . . .  

For large N ,  however, 

@.,(U> = E {  S ( w )  S ( w ) ? }  9 

e JWX 

dw = 0 fork  > 0 

(62)  
where the equality to zero can be shown following, e.g., 
the technique in [19, eqs. (14) and ( 1 3 1 .  Thus, (61) is 

e jwik = - !  I "  
2T -7r 1' 

hieJwi +.,(U> = E { N ( o )  N ( o ) ' } .  (70) 

The minimum mean square estimate of the signal vector 
s ( t )  is the noncausal Wiener filter. This Wiener filter is 
expressed in the frequency domain, and is given by (see 

5 1' C hieJW" 
i = O  I = o  
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[20, ch. 51) 

S ( 4  = E {  S ( w ) l Y ( w ) )  

= +.,(U) . H ( d ( H ( 4  +.y(w) H(4+  

+ +&))-I . Y(w). (71 1 
Note that for the scalar case and H (  U )  = 1 ,  equation (7 1) 
reduces to the familiar Wiener filter form 

The error covariance matrix is given by (again from 
[201) 

@ ( U )  = E { ( S ( U )  - S ( w ) ) ( S ( w )  - S ( W ) ) + )  

= ( + - ‘ ( U )  + H(w) . c-I * H ( w ) y  

= + ( U )  - + ( U )  * H ( U ) + ( H ( U )  

- H(w)t + C ) - I H ( w )  * + ( U )  

+ ( U )  

(72) 
which in the scalar case and H ( o )  = I reduces to the 
familiar form 

@(U) = E {  ( S ( U )  - S ( w ) ) ( S ( w )  - S ( W , ) * )  

- - +e,(w> * +,,(U) 

+.,(U) + +.,(4’ 
For the two-channel case considered in Section V ,  with 

the power spectra and H(w) defined as in (52) and (51), 
the multichannel Wiener filter (71) and (72) reduces to 
(53) and (55 ) .  
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